Uses of Class
org.flag4j.arrays.Shape
Packages that use Shape
Package
Description
Provides implementations of "smart" array objects, the tensor shape object, and tuples.
Provides implementations for dense tensors, matrices, and vectors.
Contains implementations for sparse tensors, matrices, and vectors.
IO for vector, matrix, and tensor objects.
Provides implementations of the singular value decomposition for real and complex matrices.
General linear algebra operations.
Implementations of operations on generic dense array objects.
Implementations of operations on
Field dense array objects.Implementations of operations on real dense array objects.
Implementations of operations between real array objects and
Field dense array
objects.Implementations of operations on
Ring dense array objects.Implementations of operations on
Semiring dense array objects.Implementations of operations on generic sparse COO (coordinate) array objects.
Implementations of operations on real sparse COO (coordinate) array objects.
Implementations of operations between real and complex sparse COO (coordinate) array objects.
Implementations of operations on
Ring sparse COO (coordinate) array objects.Implementations of operations on
Semiring sparse COO (coordinate) array objects.Contains solvers which solve well determined linear tensor and matrix equations in an exact sense.
Contains solvers which solve well determined triangular linear matrix equations in an exact sense.
Pseudo-random generation of real/complex numbers, and arrays, vectors, matrices, and tensors.
General utilities for arrays, strings, data validation, and generating error messages.
-
Uses of Shape in org.flag4j.arrays
Methods in org.flag4j.arrays that return ShapeModifier and TypeMethodDescriptionShape.flatten()Flattens this shape to a rank-1 shape with dimension equal to the product of all of this shape's dimensions.SmartMatrix.getShape()Gets the shape of this matrix.Shape.permuteAxes(int... axes) Permutes the axes of this shape.SparseMatrixData.shape()Returns the value of theshaperecord component.SparseTensorData.shape()Returns the value of theshaperecord component.SparseVectorData.shape()Returns the value of theshaperecord component.Shape.slice(int startIdx) Returns a slice of this shape starting from the specified index to the end of this shape's dimensions.Shape.slice(int startIdx, int stopIdx) Returns a slice of this shape from the specified start index to the stop index of this shape's dimensions.Shape.swapAxes(int axis1, int axis2) Swaps two axes of this shape.Shape.unsafePermuteAxes(int... axes) Permutes the axes of this shape.Constructors in org.flag4j.arrays with parameters of type ShapeModifierConstructorDescriptionCreates an instance of aSparseMatrixDatarecord class.SparseTensorData(Shape shape, List<T> data, List<int[]> indices) Creates an instance of aSparseTensorDatarecord class.Creates an instance of aSparseVectorDatarecord class. -
Uses of Shape in org.flag4j.arrays.backend
Fields in org.flag4j.arrays.backend declared as ShapeMethods in org.flag4j.arrays.backend that return ShapeModifier and TypeMethodDescriptionAbstractTensor.getShape()Gets the shape of this tensor.MatrixMixin.getShape()Gets the shape of this matrix.Methods in org.flag4j.arrays.backend with parameters of type ShapeModifier and TypeMethodDescriptionabstract TAbstractTensor.makeLikeTensor(Shape shape, U entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.abstract TCopies and reshapes this tensor.Constructors in org.flag4j.arrays.backend with parameters of type ShapeModifierConstructorDescriptionprotectedAbstractTensor(Shape shape, U data) Creates a tensor with the specified data and shape. -
Uses of Shape in org.flag4j.arrays.backend.field_arrays
Methods in org.flag4j.arrays.backend.field_arrays with parameters of type ShapeModifier and TypeMethodDescriptionabstract AbstractCsrFieldMatrix<?, U, V, W> AbstractCooFieldMatrix.makeLikeCsrMatrix(Shape shape, W[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.abstract AbstractCsrFieldMatrix<?, T, ?, V> AbstractDenseFieldMatrix.makeLikeCsrMatrix(Shape shape, V[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix which is of a similar type as this dense matrix.Constructors in org.flag4j.arrays.backend.field_arrays with parameters of type ShapeModifierConstructorDescriptionprotectedAbstractCooFieldMatrix(Shape shape, W[] data, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.protectedAbstractCooFieldMatrix(Shape shape, W[] data, int[] rowIndices, int[] colIndices, Object dummy) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.protectedAbstractCooFieldTensor(Shape shape, V[] entries, int[][] indices) Creates a tensor with the specified data and shape.protectedAbstractCooFieldTensor(Shape shape, V[] data, int[][] indices, Object dummy) Constructor useful for avoiding parameter validation while constructing COO tensors.protectedAbstractCooFieldVector(Shape shape, Y[] data, int[] indices) Creates a tensor with the specified data and shape.protectedAbstractCooFieldVector(Shape shape, Y[] data, int[] indices, Object dummy) Creates a tensor with the specified data and shape without performing any validation on the parameters.protectedAbstractCsrFieldMatrix(Shape shape, W[] data, int[] rowPointers, int[] colIndices) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.protectedAbstractCsrFieldMatrix(Shape shape, W[] data, int[] rowPointers, int[] colIndices, Object dummy) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.protectedAbstractDenseFieldMatrix(Shape shape, V[] data) Creates a tensor with the specified data and shape.protectedAbstractDenseFieldTensor(Shape shape, V[] entries) Creates a tensor with the specified data and shape.protectedAbstractDenseFieldVector(Shape shape, V[] entries) Creates a tensor with the specified data and shape. -
Uses of Shape in org.flag4j.arrays.backend.primitive_arrays
Methods in org.flag4j.arrays.backend.primitive_arrays with parameters of type ShapeModifier and TypeMethodDescriptionCopies and reshapes this tensor.Constructors in org.flag4j.arrays.backend.primitive_arrays with parameters of type ShapeModifierConstructorDescriptionprotectedAbstractDenseDoubleTensor(Shape shape, double[] entries) Creates a tensor with the specified data and shape.protectedAbstractDoubleTensor(Shape shape, double[] entries) Creates a tensor with the specified data and shape. -
Uses of Shape in org.flag4j.arrays.backend.ring_arrays
Methods in org.flag4j.arrays.backend.ring_arrays with parameters of type ShapeModifier and TypeMethodDescriptionabstract AbstractCsrRingMatrix<?, U, V, W> AbstractCooRingMatrix.makeLikeCsrMatrix(Shape shape, W[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.abstract AbstractCooRingTensor<?, ?, W> Converts this matrix to an equivalent tensor with the specified shape.Constructors in org.flag4j.arrays.backend.ring_arrays with parameters of type ShapeModifierConstructorDescriptionprotectedAbstractCooRingMatrix(Shape shape, W[] entries, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.protectedAbstractCooRingMatrix(Shape shape, W[] entries, int[] rowIndices, int[] colIndices, Object dummy) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.protectedAbstractCooRingTensor(Shape shape, V[] data, int[][] indices) Creates a tensor with the specified data and shape.protectedAbstractCooRingTensor(Shape shape, V[] data, int[][] indices, Object dummy) Constructor useful for avoiding parameter validation while constructing COO tensors.protectedAbstractCooRingVector(Shape shape, Y[] entries, int[] indices) Creates a COO vector with the specified data and shape.protectedAbstractCooRingVector(Shape shape, Y[] data, int[] indices, Object dummy) Creates a tensor with the specified data and shape without performing any validation on the parameters.protectedAbstractCsrRingMatrix(Shape shape, W[] data, int[] rowPointers, int[] colIndices) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.protectedAbstractCsrRingMatrix(Shape shape, W[] data, int[] rowPointers, int[] colIndices, Object dummy) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.protectedAbstractDenseRingMatrix(Shape shape, V[] data) Creates a tensor with the specified data and shape.protectedAbstractDenseRingTensor(Shape shape, V[] data) Creates a tensor with the specified data and shape.protectedAbstractDenseRingVector(Shape shape, V[] data) Creates a tensor with the specified data and shape. -
Uses of Shape in org.flag4j.arrays.backend.semiring_arrays
Methods in org.flag4j.arrays.backend.semiring_arrays that return ShapeMethods in org.flag4j.arrays.backend.semiring_arrays with parameters of type ShapeModifier and TypeMethodDescriptionabstract AbstractCooSemiringMatrix<?, U, V, W> AbstractCsrSemiringMatrix.makeLikeCooMatrix(Shape shape, W[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of a similar type to this sparse CSR matrix.protected abstract AbstractCooSemiringMatrix<?, T, ?, V> AbstractDenseSemiringMatrix.makeLikeCooMatrix(Shape shape, V[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix which is of a similar type as this dense matrix.protected abstract AbstractTensor<?, V[], V> AbstractDenseSemiringTensor.makeLikeCooTensor(Shape shape, V[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.abstract AbstractCsrSemiringMatrix<?, U, V, W> AbstractCooSemiringMatrix.makeLikeCsrMatrix(Shape shape, W[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.abstract AbstractCsrSemiringMatrix<?, T, ?, V> AbstractDenseSemiringMatrix.makeLikeCsrMatrix(Shape shape, V[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix which is of a similar type as this dense matrix.abstract WAbstractCooSemiringVector.makeLikeDenseMatrix(Shape shape, Y... entries) Constructs a dense matrix of a similar type as this vector with the specified shape and data.abstract UAbstractCooSemiringMatrix.makeLikeDenseTensor(Shape shape, W[] entries) Constructs a dense tensor with the specifiedshapeanddatawhich is a similar type to this sparse tensor.abstract UAbstractCooSemiringTensor.makeLikeDenseTensor(Shape shape, V[] entries) Constructs a dense tensor that is a similar type as this sparse COO tensor.abstract UAbstractCooSemiringVector.makeLikeDenseTensor(Shape shape, Y... entries) Constructs a dense vector of a similar type as this vector with the specified shape and data.abstract UAbstractCsrSemiringMatrix.makeLikeDenseTensor(Shape shape, W[] entries) Constructs a dense matrix which is of a similar type to this sparse CSR matrix.abstract VAbstractCooSemiringVector.makeLikeMatrix(Shape shape, Y[] entries, int[] rowIndices, int[] colIndices) Constructs a COO matrix with the specified shape, non-zero data, and row and column indices.protected abstract UAbstractDenseSemiringVector.makeLikeMatrix(Shape shape, V[] entries) Constructs a matrix of similar type to this vector with the specifiedshapeanddata.abstract TAbstractCooSemiringMatrix.makeLikeTensor(Shape shape, List<W> entries, List<Integer> rowIndices, List<Integer> colIndices) Constructs a COO matrix with the specified shape, non-zero data, and non-zero indices.abstract TAbstractCooSemiringMatrix.makeLikeTensor(Shape shape, W[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO tensor of the same type as this tensor with the specified non-zero data and indices.abstract TAbstractCooSemiringTensor.makeLikeTensor(Shape shape, List<V> data, List<int[]> indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.abstract TAbstractCooSemiringTensor.makeLikeTensor(Shape shape, V[] data, int[][] indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.abstract TConstructs a COO vector with the specified shape, non-zero data, and non-zero indices.abstract TAbstractCooSemiringVector.makeLikeTensor(Shape shape, Y[] entries, int[] indices) Constructs a sparse COO vector of the same type as this vector with the specified non-zero data and indices.abstract TAbstractCsrSemiringMatrix.makeLikeTensor(Shape shape, List<W> entries, List<Integer> rowPointers, List<Integer> colIndices) Constructs a CSR matrix with the specified shape, non-zero data, and non-zero indices.abstract TAbstractCsrSemiringMatrix.makeLikeTensor(Shape shape, W[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR tensor of the same type as this tensor with the specified non-zero data and indices.TensorOverSemiring.makeLikeTensor(Shape shape, V entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.abstract VAbstractCooSemiringMatrix.makeLikeVector(Shape shape, W[] entries, int[] indices) Constructs a sparse COO vector of a similar type to this COO matrix.protected abstract UAbstractDenseSemiringMatrix.makeLikeVector(Shape shape, V[] entries) Constructs a vector of a similar type as this matrix.Copies and reshapes this tensor.Copies and reshapes this tensor.Copies and reshapes this tensor.Copies and reshapes this tensor.Copies and reshapes this tensor.abstract AbstractCooSemiringTensor<?, ?, W> Converts this matrix to an equivalent tensor with the specified shape.abstract AbstractTensor<?, Y[], Y> Converts this vector to an equivalent tensor with the specified shape.Converts this CSR matrix to an equivalent COO tensor with the specified shape.abstract AbstractDenseSemiringTensor<?, V> Converts this matrix to an equivalent tensor with the specifiednewShape.Constructors in org.flag4j.arrays.backend.semiring_arrays with parameters of type ShapeModifierConstructorDescriptionprotectedAbstractCooSemiringMatrix(Shape shape, W[] data, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.protectedAbstractCooSemiringMatrix(Shape shape, W[] data, int[] rowIndices, int[] colIndices, Object dummy) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.protectedAbstractCooSemiringTensor(Shape shape, V[] data, int[][] indices) Creates a tensor with the specified data and shape.protectedAbstractCooSemiringTensor(Shape shape, V[] data, int[][] indices, Object dummy) Constructor useful for avoiding parameter validation while constructing COO tensors.protectedAbstractCooSemiringVector(Shape shape, Y[] data, int[] indices) Creates a sparse COO semiring vector with the specified data and shape.protectedAbstractCooSemiringVector(Shape shape, Y[] data, int[] indices, Object dummy) Creates a tensor with the specified data and shape without performing any validation on the parameters.protectedAbstractCsrSemiringMatrix(Shape shape, W[] entries, int[] rowPointers, int[] colIndices) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.protectedAbstractCsrSemiringMatrix(Shape shape, W[] entries, int[] rowPointers, int[] colIndices, Object dummy) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.protectedAbstractDenseSemiringMatrix(Shape shape, V[] entries) Creates a tensor with the specified data and shape.protectedAbstractDenseSemiringTensor(Shape shape, V[] data) Creates a tensor with the specified data and shape.protectedAbstractDenseSemiringVector(Shape shape, V[] data) Constructs a dense semiring vector with the specified data and shape. -
Uses of Shape in org.flag4j.arrays.dense
Methods in org.flag4j.arrays.dense with parameters of type ShapeModifier and TypeMethodDescriptionstatic CMatrixConstructs an identity-like matrix of the specified shape.static <T extends Field<T>>
FieldMatrix<T> Constructs an identity-like matrix of the specified shape.static MatrixConstructs an identity-like matrix of the specified shape.static <T extends Ring<T>>
RingMatrix<T> Constructs an identity-like matrix of the specified shape.static <T extends Semiring<T>>
SemiringMatrix<T> Constructs an identity-like matrix of the specified shape.protected CooCMatrixCMatrix.makeLikeCooMatrix(Shape shape, Complex128[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix which is of a similar type as this dense matrix.FieldMatrix.makeLikeCooMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of similar type to this dense matrix.protected CooRingMatrix<T> RingMatrix.makeLikeCooMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix which is of a similar type as this dense matrix.protected CooSemiringMatrix<T> SemiringMatrix.makeLikeCooMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix which is of a similar type as this dense matrix.protected CooCMatrixCMatrix.makeLikeCooTensor(Shape shape, Complex128[] entries, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooCTensorCTensor.makeLikeCooTensor(Shape shape, Complex128[] entries, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooCVectorCVector.makeLikeCooTensor(Shape shape, Complex128[] entries, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooFieldMatrix<T> FieldMatrix.makeLikeCooTensor(Shape shape, T[] entries, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooFieldTensor<T> FieldTensor.makeLikeCooTensor(Shape shape, T[] entries, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooFieldVector<T> FieldVector.makeLikeCooTensor(Shape shape, T[] entries, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooRingTensor<T> RingMatrix.makeLikeCooTensor(Shape shape, T[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooRingTensor<T> RingTensor.makeLikeCooTensor(Shape shape, T[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooRingVector<T> RingVector.makeLikeCooTensor(Shape shape, T[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooSemiringTensor<T> SemiringMatrix.makeLikeCooTensor(Shape shape, T[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooSemiringTensor<T> SemiringTensor.makeLikeCooTensor(Shape shape, T[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.protected CooSemiringVector<T> SemiringVector.makeLikeCooTensor(Shape shape, T[] data, int[][] indices) Constructs a sparse COO tensor which is of a similar type as this dense tensor.CMatrix.makeLikeCsrMatrix(Shape shape, Complex128[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix which is of a similar type as this dense matrix.FieldMatrix.makeLikeCsrMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of similar type to this dense matrix.RingMatrix.makeLikeCsrMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix which is of a similar type as this dense matrix.SemiringMatrix.makeLikeCsrMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix which is of a similar type as this dense matrix.CVector.makeLikeMatrix(Shape shape, Complex128[] entries) Constructs a matrix of similar type to this vector with the specifiedshapeanddata.FieldVector.makeLikeMatrix(Shape shape, T[] entries) Constructs a matrix of similar type to this vector with the specifiedshapeanddata.protected RingMatrix<T> RingVector.makeLikeMatrix(Shape shape, T[] entries) Constructs a matrix of similar type to this vector with the specifiedshapeanddata.protected SemiringMatrix<T> SemiringVector.makeLikeMatrix(Shape shape, T[] entries) Constructs a matrix of similar type to this vector with the specifiedshapeanddata.CMatrix.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CTensor.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given the shape and data.CVector.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.FieldMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given the shape and data.FieldTensor.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given the shape and data.FieldVector.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given the shape and data.Matrix.makeLikeTensor(Shape shape, double[] data) Constructs a tensor of the same type as this tensor with the given the shape and data.RingMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.RingTensor.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.RingVector.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.SemiringMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.SemiringTensor.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.SemiringVector.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.Tensor.makeLikeTensor(Shape shape, double[] entries) Constructs a tensor of the same type as this tensor with the given the shape and data.Vector.makeLikeTensor(Shape shape, double[] entries) Constructs a tensor of the same type as this tensor with the given the shape and data.protected CVectorCMatrix.makeLikeVector(Shape shape, Complex128[] entries) Constructs a vector of a similar type as this matrix.protected FieldVector<T> FieldMatrix.makeLikeVector(Shape shape, T[] entries) Constructs a vector of a similar type as this matrix.protected RingVector<T> RingMatrix.makeLikeVector(Shape shape, T[] entries) Constructs a vector of a similar type as this matrix.protected SemiringVector<T> SemiringMatrix.makeLikeVector(Shape shape, T[] entries) Constructs a vector of a similar type as this matrix.Converts this tensor to a matrix with the specified shape.Converts this tensor to a matrix with the specified shape.Converts this tensor to a matrix with the specified shape.Converts this tensor to an equivalent matrix with the specified shape.Converts this matrix to an equivalent tensor with the specifiednewShape.Converts this matrix to an equivalent tensor with the specifiednewShape.Converts this matrix to an equivalent tensor with the specifiednewShape.Converts this matrix to an equivalent tensor with the specifiednewShape.Constructors in org.flag4j.arrays.dense with parameters of type ShapeModifierConstructorDescriptionCreates a zero matrix with the specifiedshape.Constructs a complex matrix with specifiedshapeanddata.Creates matrix with the specifiedshapefilled withfillValue.CMatrix(Shape shape, Complex128 fillValue) Creates a complex matrix with the specifiedshapefilled withfillValue.CMatrix(Shape shape, Complex128[] entries) Creates a complex matrix with the specifieddataandshape.Creates a zero tensor with the specified shape.Creates a tensor with the specified shape and filled withfillValue.Creates a tensor with the specified data and shape.Creates a tensor with the specified shape and filled withfillValue.Creates a tensor with the specified data and shape.CTensor(Shape shape, Complex128 fillValue) Creates a tensor with the specified shape and filled withfillValue.CTensor(Shape shape, Complex128[] entries) Creates a tensor with the specified data and shape.Creates a tensor with the specified shape and filled withfillValue.Creates a tensor with the specified data and shape.Constructs a zero vector with the specified shape.CVector(Shape shape, Complex128[] data) Constructs a dense complex vector with the given shape and entries.FieldMatrix(Shape shape, T fillValue) Creates a dense field matrix with the specified data and filled withfilledValue.FieldMatrix(Shape shape, T[] entries) Creates a dense field matrix with the specified data and shape.FieldTensor(Shape shape, T fillValue) Creates a tensor with the specified shape filled withfillValue.FieldTensor(Shape shape, T[] entries) Creates a tensor with the specified data and shape.FieldVector(Shape shape, T[] entries) Constructs a dense complex vector with the given shape and entries.Creates a real dense matrix with specified shape filled with zeros.Creates a real dense matrix with specified shape filled with a specific value.Creates a tensor with the specified data and shape.RingMatrix(Shape shape, T fillValue) Creates a dense ring matrix with the specified data and filled withfilledValue.RingMatrix(Shape shape, T[] entries) Creates a tensor with the specified data and shape.RingTensor(Shape shape, T fillValue) Creates a dense ring tensor with the specified data and filled withfilledValue.RingTensor(Shape shape, T[] data) Creates a tensor with the specified data and shape.RingVector(Shape shape, T[] data) Creates a ring vector with the specified data and shape.SemiringMatrix(Shape shape, T fillValue) Creates a dense semiring matrix with the specified data and filled withfilledValue.SemiringMatrix(Shape shape, T[] entries) Creates a tensor with the specified data and shape.SemiringTensor(Shape shape, T fillValue) Creates a dense semiring tensor with the specified data and filled withfilledValue.SemiringTensor(Shape shape, T[] data) Creates a tensor with the specified data and shape.SemiringVector(Shape shape, T[] data) Creates a semiring vector with the specified data and shape.Creates a zero tensor with the shape.Creates a tensor with the specified shape filled withfillValue.Creates a tensor with the specified data and shape.Creates a tensor with the specified data and shape.Creates a tensor with the specified data and shape.Creates a tensor with the specified data and shape.Creates a vector of the specified shape filled with zeros.Creates a vector of specified size filled with a specified value.Creates a tensor with the specified data and shape. -
Uses of Shape in org.flag4j.arrays.sparse
Fields in org.flag4j.arrays.sparse declared as ShapeModifier and TypeFieldDescriptionfinal ShapePermutationMatrix.shapeShape of this permutation matrix.Methods in org.flag4j.arrays.sparse that return ShapeModifier and TypeMethodDescriptionSymmTriDiag.getShape()Gets the shape of this symmetric tri-diagonal matrix.Methods in org.flag4j.arrays.sparse with parameters of type ShapeModifier and TypeMethodDescriptionCooTensor.makeDenseTensor(Shape shape, double[] data) Makes a dense tensor with the specified shape and data which is a similar type to this sparse tensor.CsrCMatrix.makeLikeCooMatrix(Shape shape, Complex128[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of a similar type to this sparse CSR matrix.CsrFieldMatrix.makeLikeCooMatrix(Shape shape, T[] data, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of a similar type to this sparse CSR matrix.CsrRingMatrix.makeLikeCooMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of a similar type to this sparse CSR matrix.CsrSemiringMatrix.makeLikeCooMatrix(Shape shape, T[] data, int[] rowIndices, int[] colIndices) Constructs a sparse COO matrix of a similar type to this sparse CSR matrix.CooCMatrix.makeLikeCsrMatrix(Shape shape, Complex128[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.CooFieldMatrix.makeLikeCsrMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.CooRingMatrix.makeLikeCsrMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.CooSemiringMatrix.makeLikeCsrMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR matrix of a similar type to this sparse COO matrix.CooCVector.makeLikeDenseMatrix(Shape shape, Complex128... entries) Constructs a dense matrix of a similar type as this vector with the specified shape and data.CooFieldVector.makeLikeDenseMatrix(Shape shape, T... entries) Constructs a dense matrix of a similar type as this vector with the specified shape and data.CooRingVector.makeLikeDenseMatrix(Shape shape, T... entries) Constructs a dense matrix of a similar type as this vector with the specified shape and data.CooSemiringVector.makeLikeDenseMatrix(Shape shape, T... entries) Constructs a dense matrix of a similar type as this vector with the specified shape and data.CooCMatrix.makeLikeDenseTensor(Shape shape, Complex128[] entries) Constructs a dense tensor with the specifiedshapeanddatawhich is a similar type to this sparse tensor.CooCTensor.makeLikeDenseTensor(Shape shape, Complex128[] entries) Constructs a dense tensor that is a similar type as this sparse COO tensor.CooCVector.makeLikeDenseTensor(Shape shape, Complex128... entries) Constructs a dense vector of a similar type as this vector with the specified shape and data.CooFieldMatrix.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense tensor with the specifiedshapeanddatawhich is a similar type to this sparse tensor.CooFieldTensor.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense tensor that is a similar type as this sparse COO tensor.CooFieldVector.makeLikeDenseTensor(Shape shape, T... entries) Constructs a dense vector of a similar type as this vector with the specified shape and data.CooRingMatrix.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense tensor with the specifiedshapeanddatawhich is a similar type to this sparse tensor.CooRingTensor.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense tensor that is a similar type as this sparse COO tensor.CooRingVector.makeLikeDenseTensor(Shape shape, T... entries) Constructs a dense vector of a similar type as this vector with the specified shape and data.CooSemiringMatrix.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense tensor with the specifiedshapeanddatawhich is a similar type to this sparse tensor.CooSemiringTensor.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense tensor that is a similar type as this sparse COO tensor.CooSemiringVector.makeLikeDenseTensor(Shape shape, T... entries) Constructs a dense vector of a similar type as this vector with the specified shape and data.CsrCMatrix.makeLikeDenseTensor(Shape shape, Complex128[] entries) Constructs a dense matrix which is of a similar type to this sparse CSR matrix.CsrFieldMatrix.makeLikeDenseTensor(Shape shape, T[] data) Constructs a dense matrix which is of a similar type to this sparse CSR matrix.CsrRingMatrix.makeLikeDenseTensor(Shape shape, T[] entries) Constructs a dense matrix which is of a similar type to this sparse CSR matrix.CsrSemiringMatrix.makeLikeDenseTensor(Shape shape, T[] data) Constructs a dense matrix which is of a similar type to this sparse CSR matrix.CooCVector.makeLikeMatrix(Shape shape, Complex128[] entries, int[] rowIndices, int[] colIndices) Constructs a COO matrix with the specified shape, non-zero data, and row and column indices.CooFieldVector.makeLikeMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a COO matrix with the specified shape, non-zero data, and row and column indices.CooRingVector.makeLikeMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a COO matrix with the specified shape, non-zero data, and row and column indices.CooSemiringVector.makeLikeMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a COO matrix with the specified shape, non-zero data, and row and column indices.CooCMatrix.makeLikeTensor(Shape shape, List<Complex128> entries, List<Integer> rowIndices, List<Integer> colIndices) Constructs a COO matrix with the specified shape, non-zero data, and non-zero indices.CooCMatrix.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooCMatrix.makeLikeTensor(Shape shape, Complex128[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO tensor of the same type as this tensor with the specified non-zero data and indices.CooCTensor.makeLikeTensor(Shape shape, List<Complex128> entries, List<int[]> indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.CooCTensor.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooCTensor.makeLikeTensor(Shape shape, Complex128[] entries, int[][] indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.CooCVector.makeLikeTensor(Shape shape, List<Complex128> entries, List<Integer> indices) Constructs a COO vector with the specified shape, non-zero data, and non-zero indices.CooCVector.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooCVector.makeLikeTensor(Shape shape, Complex128[] entries, int[] indices) Constructs a sparse COO vector of the same type as this vector with the specified non-zero data and indices.CooFieldMatrix.makeLikeTensor(Shape shape, List<T> entries, List<Integer> rowIndices, List<Integer> colIndices) Constructs a COO matrix with the specified shape, non-zero data, and non-zero indices.CooFieldMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooFieldMatrix.makeLikeTensor(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO tensor of the same type as this tensor with the specified non-zero data and indices.CooFieldTensor.makeLikeTensor(Shape shape, List<T> entries, List<int[]> indices) Constructs a sparse tensor of the same type as this tensor with the given the shape, non-zero data, and non-zero indices.CooFieldTensor.makeLikeTensor(Shape shape, T[] entries) Constructs a sparse tensor of the same type as this tensor with the same indices as this sparse tensor and with the provided the shape and data.CooFieldTensor.makeLikeTensor(Shape shape, T[] entries, int[][] indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.Constructs a COO vector with the specified shape, non-zero data, and non-zero indices.CooFieldVector.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooFieldVector.makeLikeTensor(Shape shape, T[] entries, int[] indices) Constructs a sparse COO vector of the same type as this vector with the specified non-zero data and indices.CooMatrix.makeLikeTensor(Shape shape, double[] data) Constructs a sparse COO matrix of the same type as this tensor with the given the shape and data and indices copied from this matrix.CooRingMatrix.makeLikeTensor(Shape shape, List<T> entries, List<Integer> rowIndices, List<Integer> colIndices) Constructs a COO matrix with the specified shape, non-zero data, and non-zero indices.CooRingMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooRingMatrix.makeLikeTensor(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO tensor of the same type as this tensor with the specified non-zero data and indices.CooRingTensor.makeLikeTensor(Shape shape, List<T> data, List<int[]> indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.CooRingTensor.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooRingTensor.makeLikeTensor(Shape shape, T[] data, int[][] indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.Constructs a COO vector with the specified shape, non-zero data, and non-zero indices.CooRingVector.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooRingVector.makeLikeTensor(Shape shape, T[] entries, int[] indices) Constructs a sparse COO vector of the same type as this vector with the specified non-zero data and indices.CooSemiringMatrix.makeLikeTensor(Shape shape, List<T> entries, List<Integer> rowIndices, List<Integer> colIndices) Constructs a COO matrix with the specified shape, non-zero data, and non-zero indices.CooSemiringMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooSemiringMatrix.makeLikeTensor(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Constructs a sparse COO tensor of the same type as this tensor with the specified non-zero data and indices.CooSemiringTensor.makeLikeTensor(Shape shape, List<T> data, List<int[]> indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.CooSemiringTensor.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooSemiringTensor.makeLikeTensor(Shape shape, T[] data, int[][] indices) Constructs a tensor of the same type as this tensor with the specified shape and non-zero data.Constructs a COO vector with the specified shape, non-zero data, and non-zero indices.CooSemiringVector.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CooSemiringVector.makeLikeTensor(Shape shape, T[] entries, int[] indices) Constructs a sparse COO vector of the same type as this vector with the specified non-zero data and indices.CooTensor.makeLikeTensor(Shape shape, double[] data) Constructs a sparse tensor of the same type as this tensor with the same indices as this sparse tensor and with the provided the shape and data.CooTensor.makeLikeTensor(Shape shape, double[] data, int[][] indices) Constructs a sparse tensor of the same type as this tensor with the given the shape, non-zero data, and non-zero indices.CooTensor.makeLikeTensor(Shape shape, List<Double> data, List<int[]> indices) Constructs a sparse tensor of the same type as this tensor with the given the shape, non-zero data, and non-zero indices.CooVector.makeLikeTensor(Shape shape, double[] data) Constructs a tensor of the same type as this tensor with the given the shape and data.CsrCMatrix.makeLikeTensor(Shape shape, List<Complex128> entries, List<Integer> rowPointers, List<Integer> colIndices) Constructs a CSR matrix with the specified shape, non-zero data, and non-zero indices.CsrCMatrix.makeLikeTensor(Shape shape, Complex128[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CsrCMatrix.makeLikeTensor(Shape shape, Complex128[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR tensor of the same type as this tensor with the specified non-zero data and indices.CsrFieldMatrix.makeLikeTensor(Shape shape, List<T> data, List<Integer> rowPointers, List<Integer> colIndices) Constructs a CSR matrix with the specified shape, non-zero data, and non-zero indices.CsrFieldMatrix.makeLikeTensor(Shape shape, T[] data) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CsrFieldMatrix.makeLikeTensor(Shape shape, T[] data, int[] rowPointers, int[] colIndices) Constructs a sparse CSR tensor of the same type as this tensor with the specified non-zero data and indices.CsrMatrix.makeLikeTensor(Shape shape, double[] entries) Constructs a CSR matrix of the same type as this matrix with the given theshapeanddataand the same row pointers and column indices as this matrix.CsrRingMatrix.makeLikeTensor(Shape shape, List<T> entries, List<Integer> rowPointers, List<Integer> colIndices) Constructs a CSR matrix with the specified shape, non-zero data, and non-zero indices.CsrRingMatrix.makeLikeTensor(Shape shape, T[] entries) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CsrRingMatrix.makeLikeTensor(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Constructs a sparse CSR tensor of the same type as this tensor with the specified non-zero data and indices.CsrSemiringMatrix.makeLikeTensor(Shape shape, List<T> data, List<Integer> rowPointers, List<Integer> colIndices) Constructs a CSR matrix with the specified shape, non-zero data, and non-zero indices.CsrSemiringMatrix.makeLikeTensor(Shape shape, T[] data) Constructs a tensor of the same type as this tensor with the given theshapeanddata.CsrSemiringMatrix.makeLikeTensor(Shape shape, T[] data, int[] rowPointers, int[] colIndices) Constructs a sparse CSR tensor of the same type as this tensor with the specified non-zero data and indices.CooCMatrix.makeLikeVector(Shape shape, Complex128[] entries, int[] indices) Constructs a sparse COO vector of a similar type to this COO matrix.CooFieldMatrix.makeLikeVector(Shape shape, T[] entries, int[] indices) Constructs a sparse COO vector of a similar type to this COO matrix.CooRingMatrix.makeLikeVector(Shape shape, T[] entries, int[] indices) Constructs a sparse COO vector of a similar type to this COO matrix.CooSemiringMatrix.makeLikeVector(Shape shape, T[] entries, int[] indices) Constructs a sparse COO vector of a similar type to this COO matrix.Copies and reshapes this tensor.Copies and reshapes this tensor.Copies and reshapes this tensor.Copies and reshapes this tensor.Converts this tensor to a matrix with specified shape.Converts this tensor to a matrix with the specified shape.Converts this tensor to a matrix with the specified shape.Converts this tensor to a matrix with the specified shape.Converts this matrix to an equivalent tensor with the specified shape.Converts this vector to an equivalent tensor with the specified shape.Converts this matrix to an equivalent tensor with the specified shape.Converts this vector to an equivalent tensor with the specified shape.Converts this matrix to an equivalent tensor with the specified shape.Converts this vector to an equivalent tensor with the specified shape.Converts this matrix to an equivalent tensor with the specified shape.Converts this vector to an equivalent tensor with the specified shape.Converts this CSR matrix to an equivalent COO tensor with the specified shape.Converts this CSR matrix to an equivalent COO tensor with the specified shape.Converts this CSR matrix to an equivalent COO tensor with the specified shape.Converts this CSR matrix to an equivalent COO tensor with the specified shape.static CooCMatrixCooCMatrix.unsafeMake(Shape shape, Complex128[] data, int[] rowIndices, int[] colIndices) Factory to construct a COO matrix which bypasses any validation checks on the data and indices.static CooCTensorCooCTensor.unsafeMake(Shape shape, Complex128[] data, int[][] indices) Factory to construct a COO tensor which bypasses any validation checks on the data and indices.static CooCVectorCooCVector.unsafeMake(Shape shape, Complex128[] data, int[] indices) Factory to construct a COO vector which bypasses any validation checks on the data and indices.static <T extends Field<T>>
CooFieldMatrix<T> CooFieldMatrix.unsafeMake(Shape shape, T[] data, int[] rowIndices, int[] colIndices) Factory to construct a COO matrix which bypasses any validation checks on the data and indices.static <T extends Field<T>>
CooFieldTensor<T> CooFieldTensor.unsafeMake(Shape shape, T[] data, int[][] indices) Factory to construct a COO tensor which bypasses any validation checks on the data and indices.static <T extends Field<T>>
CooFieldVector<T> CooFieldVector.unsafeMake(Shape shape, T[] data, int[] indices) Factory to construct a COO vector which bypasses any validation checks on the data and indices.static CooMatrixCooMatrix.unsafeMake(Shape shape, double[] data, int[] rowIndices, int[] colIndices) Factory to construct a COO matrix which bypasses any validation checks on the data and indices.static <T extends Ring<T>>
CooRingMatrix<T> CooRingMatrix.unsafeMake(Shape shape, T[] data, int[] rowIndices, int[] colIndices) Factory to construct a COO matrix which bypasses any validation checks on the data and indices.static <T extends Ring<T>>
CooRingTensor<T> CooRingTensor.unsafeMake(Shape shape, T[] data, int[][] indices) Factory to construct a COO tensor which bypasses any validation checks on the data and indices.static <T extends Ring<T>>
CooRingVector<T> CooRingVector.unsafeMake(Shape shape, T[] data, int[] indices) Factory to construct a COO vector which bypasses any validation checks on the data and indices.static <T extends Semiring<T>>
CooSemiringMatrix<T> CooSemiringMatrix.unsafeMake(Shape shape, T[] data, int[] rowIndices, int[] colIndices) Factory to construct a COO matrix which bypasses any validation checks on the data and indices.static <T extends Semiring<T>>
CooSemiringTensor<T> CooSemiringTensor.unsafeMake(Shape shape, T[] data, int[][] indices) Factory to construct a COO tensor which bypasses any validation checks on the data and indices.static <T extends Semiring<T>>
CooSemiringVector<T> CooSemiringVector.unsafeMake(Shape shape, T[] data, int[] indices) Factory to construct a COO vector which bypasses any validation checks on the data and indices.static CooTensorCooTensor.unsafeMake(Shape shape, double[] data, int[][] indices) Factory to construct a COO tensor which bypasses any validation checks on the data and indices.static CooVectorCooVector.unsafeMake(Shape shape, double[] data, int[] indices) Factory to construct a COO vector which bypasses any validation checks on the data and indices.static CsrCMatrixCsrCMatrix.unsafeMake(Shape shape, Complex128[] data, int[] rowPointers, int[] colIndices) Factory to construct a CSR matrix which bypasses any validation checks on the data and indices.static <T extends Field<T>>
CsrFieldMatrix<T> CsrFieldMatrix.unsafeMake(Shape shape, Complex128[] data, int[] rowPointers, int[] colIndices) Factory to construct a CSR matrix which bypasses any validation checks on the data and indices.static CsrMatrixCsrMatrix.unsafeMake(Shape shape, double[] data, int[] rowPointers, int[] colIndices) Factory to construct a CSR matrix which bypasses any validation checks on the data and indices.static <T extends Ring<T>>
CsrRingMatrix<T> CsrRingMatrix.unsafeMake(Shape shape, Complex128[] data, int[] rowPointers, int[] colIndices) Factory to construct a CSR matrix which bypasses any validation checks on the data and indices.static <T extends Semiring<T>>
CsrSemiringMatrix<T> CsrSemiringMatrix.unsafeMake(Shape shape, Complex128[] data, int[] rowPointers, int[] colIndices) Factory to construct a CSR matrix which bypasses any validation checks on the data and indices.static voidSparseValidation.validateCoo(Shape shape, int nnz, int[][] indices) Validates constructor parameters for sparse COO tensors.static voidSparseValidation.validateCoo(Shape shape, int nnz, int[] rowIndices, int[] colIndices) Validates constructor parameters for sparse COO matrices.static voidSparseValidation.validateCsr(Shape shape, int nnz, int[] rowPointers, int[] colIndices) Validates constructor parameters for sparse CSR matrices.Constructors in org.flag4j.arrays.sparse with parameters of type ShapeModifierConstructorDescriptionCooCMatrix(Shape shape) Constructs a zero matrix of the specified shape.CooCMatrix(Shape shape, double[] entries, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooCMatrix(Shape shape, List<Complex128> entries, List<Integer> rowIndices, List<Integer> colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooCMatrix(Shape shape, Complex128[] entries, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooCTensor(Shape shape) Creates a tensor with the specified data and shape.CooCTensor(Shape shape, double[] entries, int[][] indices) Creates a tensor with the specified data and shape.CooCTensor(Shape shape, List<Complex128> entries, List<int[]> indices) Creates a tensor with the specified data and shape.CooCTensor(Shape shape, Complex128[] entries, int[][] indices) Creates a tensor with the specified data and shape.CooCTensor(Shape shape, Complex64[] entries, int[][] indices) Creates a tensor with the specified data and shape.CooCVector(Shape shape, List<Complex128> entries, List<Integer> indices) Constructs a complex COO vector with the specified size, non-zero data, and non-zero indices.CooCVector(Shape shape, Complex128[] entries, int[] indices) Creates a tensor with the specified data and shape.Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooFieldMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooFieldTensor(Shape shape, List<T> entries, List<int[]> indices) Creates a tensor with the specified data and shape.CooFieldTensor(Shape shape, T[] entries, int[][] indices) creates a tensor with the specified data and shape.CooFieldVector(Shape shape, T[] entries, int[] indices) Creates sparse COO vector with the specifiedsize, non-zero data, and non-zero indices.Constructs a zero matrix with the specified shape.Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooRingMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooRingTensor(Shape shape, List<T> data, List<int[]> indices) Creates a tensor with the specified data and shape.CooRingTensor(Shape shape, T[] data, int[][] indices) Creates a tensor with the specified data and shape.Creates sparse COO vector with the specifiedsize, non-zero data, and non-zero indices.CooRingVector(Shape shape, T[] entries, int[] indices) Creates a tensor with the specified data and shape.Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooSemiringMatrix(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Creates a sparse coo matrix with the specified non-zero data, non-zero indices, and shape.CooSemiringTensor(Shape shape, List<T> data, List<int[]> indices) Creates a tensor with the specified data and shape.CooSemiringTensor(Shape shape, T[] data, int[][] indices) Creates a tensor with the specified data and shape.Creates sparse COO vector with the specifiedsize, non-zero data, and non-zero indices.CooSemiringVector(Shape shape, T[] entries, int[] indices) Creates a tensor with the specified data and shape.Creates a zero matrix with the specified shape.Creates a tensor with the specified data and shape.Creates a sparse COO matrix with the specified shape, non-zero data, and indices.Creates a tensor with the specified data and shape.Creates sparse COO vector with the specifiedsize, non-zero data, and non-zero indices.Creates sparse COO vector with the specifiedsize, non-zero data, and non-zero indices.CsrCMatrix(Shape shape) Constructs a zero matrix of the specified shape.CsrCMatrix(Shape shape, List<Complex128> entries, List<Integer> rowPointers, List<Integer> colIndices) Creates a complex sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.CsrCMatrix(Shape shape, Complex128[] entries, int[] rowPointers, int[] colIndices) Creates a complex sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.CsrFieldMatrix(Shape shape, T fieldElement) Constructs a sparse CSR matrix representing the zero matrix for the field whichfieldElementbelongs to.CsrFieldMatrix(Shape shape, T[] data, int[] rowPointers, int[] colIndices) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.Constructs zero matrix with the specifiedshape.Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.CsrRingMatrix(Shape shape, T ringElement) Constructs a sparse CSR matrix representing the zero matrix for the field whichringElementbelongs to.CsrRingMatrix(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.CsrSemiringMatrix(Shape shape, T semiringElement) Constructs a sparse CSR matrix representing the zero matrix for the field whichsemiringElementbelongs to.CsrSemiringMatrix(Shape shape, T[] data, int[] rowPointers, int[] colIndices) Creates a sparse CSR matrix with the specifiedshape, non-zero data, row pointers, and non-zero column indices.PermutationMatrix(Shape shape) Creates a permutation matrix which is equivalent to the identity matrix of the specified size. -
Uses of Shape in org.flag4j.io
Methods in org.flag4j.io with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T> StringPrettyPrint.matrixToString(Shape shape, double[] data) Converts a matrix into a "pretty" string using parameters set in thePrintOptionsclass.static <T> StringPrettyPrint.matrixToString(Shape shape, T[] data) Converts a matrix into a "pretty" string using parameters set in thePrintOptionsclass. -
Uses of Shape in org.flag4j.linalg.decompositions.svd
Methods in org.flag4j.linalg.decompositions.svd with parameters of type ShapeModifier and TypeMethodDescriptionprotected voidInitializes the unitary \( U \) and \( V \) matrices for the SVD.protected voidInitializes the unitary \( U \) and \( V \) matrices for the SVD.protected abstract voidInitializes the unitary \( U \) and \( V \) matrices for the SVD. -
Uses of Shape in org.flag4j.linalg.ops
Fields in org.flag4j.linalg.ops declared as ShapeModifier and TypeFieldDescriptionprotected ShapeTensorDot.destShapeprotected ShapeTensorDot.newShape1protected ShapeTensorDot.newShape2protected ShapeTensorDot.shape1protected ShapeTensorDot.shape2Methods in org.flag4j.linalg.ops that return ShapeModifier and TypeMethodDescriptionTensorDot.getOutputShape()Gets the shape of the tensor resulting from this tensor dot product as specified in the constructor.Methods in org.flag4j.linalg.ops with parameters of type ShapeModifier and TypeMethodDescriptiondouble[]Applies the specified binary operation on the two tensors.static org.flag4j.linalg.ops.MatrixMultiplyDispatcher.AlgorithmNameMatrixMultiplyDispatcher.chooseAlgorithmRealComplex(Shape shape1, Shape shape2) Dynamically chooses matrix multiply algorithm based on the shapes of the two matrices to multiply.static org.flag4j.linalg.ops.MatrixMultiplyDispatcher.AlgorithmNameMatrixMultiplyDispatcher.chooseAlgorithmRealComplexVector(Shape shape) Dynamically chooses matrix-vector multiply algorithm based on the shapes of the matrix to multiply.static double[]RealDenseMatrixMultiplyDispatcher.dispatch(double[] src1, Shape shape1, double[] src2, Shape shape2) Dispatches a matrix multiply problem to the appropriate algorithm based on the size of the matrices.static double[]Dispatches a matrix transpose problem to the appropriate algorithm based on its shape and size.static Object[]Dispatches a matrix transpose problem to the appropriate algorithm based on its shape and size.static <T extends Ring<T>>
voidTransposeDispatcher.dispatchHermitian(T[] src, Shape shape, T[] dest) Dispatches a matrix Hermitian transpose (i.e. conjugate transpose) problem to the appropriate algorithm based on its shape and size.static double[]TransposeDispatcher.dispatchTensor(double[] src, Shape shape, int[] axes) Dispatches a tensor transpose problem to the appropriate algorithm based on its shape and size.static Object[]TransposeDispatcher.dispatchTensor(Object[] src, Shape shape, int[] axes, Object[] dest) Dispatches a tensor transpose problem to the appropriate algorithm based on its shape and size.static <T> T[]TransposeDispatcher.dispatchTensor(T[] src, Shape srcShape, int axis1, int axis2, T[] dest) Dispatches a tensor transpose problem to the appropriate algorithm based on its shape and size.static <V extends Ring<V>>
voidTransposeDispatcher.dispatchTensorHermitian(Shape shape, V[] src, int[] axes, V[] dest) Dispatches a tensor Hermitian transpose problem to the appropriate algorithm based on its shape and size.static <V extends Ring<V>>
voidTransposeDispatcher.dispatchTensorHermitian(Shape shape, V[] src, int axis1, int axis2, V[] dest) Dispatches a tensor Hermitian transpose problem to the appropriate algorithm based on its shape and size.Constructors in org.flag4j.linalg.ops with parameters of type Shape -
Uses of Shape in org.flag4j.linalg.ops.dense
Methods in org.flag4j.linalg.ops.dense with parameters of type ShapeModifier and TypeMethodDescriptionstatic double[]Computes the transpose of a tensor.static <T> Object[]Computes the transpose of a tensor.static Object[]Transposes tensor along specified axes using a standard transpose algorithm.static <T> Object[]DenseTranspose.standardConcurrent(Object[] src, Shape shape, int[] axes, Object[] dest) Computes the transpose of a tensor using a concurrent implementation.static <T> Object[]DenseTranspose.standardConcurrent(Object[] src, Shape shape, int axis1, int axis2, Object[] dest) Transposes tensor along specified axes using a standard concurrent transpose algorithm.static <T> voidSwaps specified columns in the matrix.static <T> voidDenseOps.swapColsUnsafe(Shape shape, T[] data, int colIdx1, int colIdx2, int start, int stop) Swaps two columns, over a specified range of rows, within a matrix.static <T> voidSwaps specified rows in the matrix.static <T> voidDenseOps.swapRowsUnsafe(Shape shape, T[] data, int rowIdx1, int rowIdx2, int start, int stop) Swaps two rows, over a specified range of columns, within a matrix.static <T> booleanDenseEquals.tensorEquals(T[] src1, Shape shape1, T[] src2, Shape shape2) Checks if two dense tensors are equal.Constructors in org.flag4j.linalg.ops.dense with parameters of type ShapeModifierConstructorDescriptionDenseSemiringTensorDot(Shape shape1, T[] src1, Shape shape2, T[] src2, int[] src1Axes, int[] src2Axes) Constructs a tensor dot product problem for computing the tensor contraction of two tensors over the specified set of axes. -
Uses of Shape in org.flag4j.linalg.ops.dense_sparse.coo.field_ops
Methods in org.flag4j.linalg.ops.dense_sparse.coo.field_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Field<T>>
voidDenseCooFieldMatMult.blockedVector(T[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.concurrentBlockedVector(T[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.concurrentStandard(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication between a real sparse matrix and a real dense matrix using a concurrent standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.concurrentStandard(T[] src1, Shape shape1, T[] src2, int[] rowIndices, int[] colIndices, Shape shape2, T[] dest) Computes the matrix multiplication between a real dense matrix and a real sparse matrix using a concurrent standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.concurrentStandardVector(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the sparse matrix dense vector multiplication using a concurrent standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.concurrentStandardVector(T[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a concurrent standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatrixOps.elemMult(Shape shape1, T[] data1, Shape shape2, T[] data2, int[] rowIndices2, int[] colIndices2, T[] dest) Computes the element-wise multiplication between a real dense matrix and a real sparse matrix.static <T extends Field<T>>
voidDenseCooFieldMatMult.standard(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication between a sparse COO matrix and a dense matrix using a standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.standard(T[] src1, Shape shape1, T[] src2, int[] rowIndices, int[] colIndices, Shape shape2, T[] dest) Computes the matrix multiplication between a dense matrix and a sparse COO matrix using a standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.standardVector(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the sparse matrix dense vector multiplication using a standard algorithm.static <T extends Field<T>>
voidDenseCooFieldMatMult.standardVector(T[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a standard algorithm. -
Uses of Shape in org.flag4j.linalg.ops.dense_sparse.coo.real
Methods in org.flag4j.linalg.ops.dense_sparse.coo.real with parameters of type ShapeModifier and TypeMethodDescriptionstatic double[]RealDenseSparseMatMult.blockedVector(double[] src1, Shape shape1, double[] src2, int[] indices) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static double[]RealDenseSparseMatMult.concurrentBlockedVector(double[] src1, Shape shape1, double[] src2, int[] indices) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static double[]RealDenseSparseMatMult.concurrentStandard(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication between a real sparse matrix and a real dense matrix using a concurrent standard algorithm.static double[]RealDenseSparseMatMult.concurrentStandard(double[] src1, Shape shape1, double[] src2, int[] rowIndices, int[] colIndices, Shape shape2) Computes the matrix multiplication between a real dense matrix and a real sparse matrix using a concurrent standard algorithm.static double[]RealDenseSparseMatMult.concurrentStandardVector(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2) Computes the sparse matrix dense vector multiplication using a concurrent standard algorithm.static double[]RealDenseSparseMatMult.concurrentStandardVector(double[] src1, Shape shape1, double[] src2, int[] indices) Computes the dense matrix sparse vector multiplication using a concurrent standard algorithm.static double[]RealDenseSparseMatrixMultTranspose.multTranspose(double[] dSrc, Shape dShape, double[] spSrc, int[] rowIndices, int[] colIndices, Shape spShape) Multiplies a real dense matrix to the transpose of a real sparse matrix.static double[]RealDenseSparseMatMult.standard(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication between a real sparse matrix and a real dense matrix using a standard algorithm.static double[]RealDenseSparseMatMult.standard(double[] src1, Shape shape1, double[] src2, int[] rowIndices, int[] colIndices, Shape shape2) Computes the matrix multiplication between a real dense matrix and a real sparse matrix using a standard algorithm.static double[]RealDenseSparseMatMult.standardVector(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2) Computes the sparse matrix dense vector multiplication using a standard algorithm.static double[]RealDenseSparseMatMult.standardVector(double[] src1, Shape shape1, double[] src2, int[] indices) Computes the dense matrix sparse vector multiplication using a standard algorithm. -
Uses of Shape in org.flag4j.linalg.ops.dense_sparse.coo.real_complex
Methods in org.flag4j.linalg.ops.dense_sparse.coo.real_complex with parameters of type ShapeModifier and TypeMethodDescriptionstatic voidRealComplexDenseCooOps.add(Shape shape1, double[] src1, Shape shape2, Complex128[] src2, int[][] indices, Complex128[] dest) Computes element-wise sum between a real dense tensor to a sparse COO complex tensor. -
Uses of Shape in org.flag4j.linalg.ops.dense_sparse.coo.real_field_ops
Methods in org.flag4j.linalg.ops.dense_sparse.coo.real_field_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Field<T>>
voidRealFieldDenseCooMatMult.blockedVector(double[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.blockedVector(T[] src1, Shape shape1, double[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentBlockedVector(double[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentBlockedVector(T[] src1, Shape shape1, double[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandard(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication between a real sparse matrix and a dense field matrix using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandard(double[] src1, Shape shape1, T[] src2, int[] rowIndices, int[] colIndices, Shape shape2, T[] dest) Computes the matrix multiplication between a real dense matrix and a sparse field matrix using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandard(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication between a real sparse matrix and a dense field matrix using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandard(T[] src1, Shape shape1, double[] src2, int[] rowIndices, int[] colIndices, Shape shape2, T[] dest) Computes the matrix multiplication between a real dense matrix and a sparse field matrix using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandardVector(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the sparse matrix dense vector multiplication using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandardVector(double[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandardVector(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the sparse matrix dense vector multiplication using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.concurrentStandardVector(T[] src1, Shape shape1, double[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a concurrent standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMultTranspose.multTranspose(double[] deSrc, Shape deShape, T[] spSrc, int[] rowIndices, int[] colIndices, Shape spShape, T[] dest) Multiplies a real dense matrix to the transpose of a sparse field matrix.static <T extends Field<T>>
voidRealFieldDenseCooMatMultTranspose.multTranspose(T[] dSrc, Shape dShape, double[] spSrc, int[] rowIndices, int[] colIndices, Shape spShape, T[] dest) Multiplies a dense field matrix to the transpose of a real sparse matrix.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standard(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication between a real sparse matrix and a dense field matrix using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standard(double[] src1, Shape shape1, T[] src2, int[] rowIndices, int[] colIndices, Shape shape2, T[] dest) Computes the matrix multiplication between a real dense matrix and a sparse field matrix using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standard(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication between a real sparse matrix and a dense field matrix using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standard(T[] src1, Shape shape1, double[] src2, int[] rowIndices, int[] colIndices, Shape shape2, T[] dest) Computes the matrix multiplication between a real dense matrix and a sparse field matrix using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standardVector(double[] src1, int[] rowIndices, int[] colIndices, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the sparse matrix dense vector multiplication using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standardVector(double[] src1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standardVector(T[] src1, int[] rowIndices, int[] colIndices, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the sparse matrix dense vector multiplication using a standard algorithm.static <T extends Field<T>>
voidRealFieldDenseCooMatMult.standardVector(T[] src1, Shape shape1, double[] src2, int[] indices, T[] dest) Computes the dense matrix sparse vector multiplication using a standard algorithm. -
Uses of Shape in org.flag4j.linalg.ops.dense.field_ops
Methods in org.flag4j.linalg.ops.dense.field_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Field<T>>
voidDynamically chooses and applies element-wise division algorithm to use based on the number of data in the tensors.static <T extends Field<T>>
voidComputes the element-wise division between two tensors.static <T extends Field<T>>
voidComputes the element-wise division of two tensors.static <T extends Field<T>>
voidDenseFieldElemDiv.elemDivConcurrent(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the element-wise division of two tensors using a concurrent algorithm. -
Uses of Shape in org.flag4j.linalg.ops.dense.real
Methods in org.flag4j.linalg.ops.dense.real with parameters of type ShapeModifier and TypeMethodDescriptionstatic voidComputes element-wise addition between tensors and stores the result in the first tensor.static double[]Computes the matrix multiplication of two real dense matrices using a blocked algorithm.static double[]RealDenseMatMult.blockedReordered(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication of two real dense matrices using a blocked algorithm with the j-k loops swapped.static double[]RealDenseMatMult.blockedVector(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the multiplication of a real dense matrix with a real dense vector using a blocked algorithm.static double[]RealDenseMatMult.concurrentBlocked(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication of two real dense matrices using a concurrent implementation of a blocked algorithm.static double[]RealDenseMatMult.concurrentBlockedReordered(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication of two real dense matrices using a concurrent implementation of a blocked algorithm with the j-k loops swapped.static double[]RealDenseMatMult.concurrentBlockedVector(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the multiplication of a real dense matrix with a real dense vector using a concurrent implementation of a blocked algorithm.static double[]RealDenseMatMult.concurrentReordered(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication of two real dense matrices using a concurrent implementation of the standard matrix multiplication algorithm with j-k loops swapped.static double[]RealDenseMatMult.concurrentStandard(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the matrix multiplication of two real dense matrices using a concurrent implementation of the standard matrix multiplication algorithm.static double[]RealDenseMatMult.concurrentStandardVector(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the multiplication of a real dense matrix with a real dense vector using a concurrent implementation of the standard matrix multiplication algorithm.static booleanRealDenseProperties.isAntiSymmetric(double[] src, Shape shape) Checks if a real dense matrix is anti-symmetric.static booleanRealDenseProperties.isSymmetric(double[] src, Shape shape) Checks if a real dense matrix is symmetric.static double[]RealDenseMatMultTranspose.multTranspose(double[] src1, Shape shape1, double[] src2, Shape shape2) Multiplies a matrix to the transpose of a second matrix.static double[]RealDenseMatMultTranspose.multTransposeBlocked(double[] src1, Shape shape1, double[] src2, Shape shape2) Multiplies a matrix to the transpose of a second matrix using a blocked algorithm.static double[]RealDenseMatMultTranspose.multTransposeBlockedConcurrent(double[] src1, Shape shape1, double[] src2, Shape shape2) Multiplies a matrix to the transpose of a second matrix using a concurrent implementation of a blocked algorithm.static double[]RealDenseMatMultTranspose.multTransposeConcurrent(double[] src1, Shape shape1, double[] src2, Shape shape2) Multiplies a matrix to the transpose of a second matrix using a concurrent algorithm.static double[]Computes the matrix multiplication between two real dense matrices using the standard algorithm with j-k loops swapped.static voidSets an element of a tensor to the specified value.static double[]Computes the matrix multiplication between two real dense matrices using the standard algorithm.static double[]Computes the transpose of a tensor.static double[]Transposes tensor along specified axes using a standard transpose algorithm.static double[]RealDenseTranspose.standardConcurrent(double[] src, Shape shape, int[] axes) Computes the transpose of a tensor using a concurrent implementation.static double[]RealDenseTranspose.standardConcurrent(double[] src, Shape shape, int axis1, int axis2) Transposes tensor along specified axes using a standard concurrent transpose algorithm.static double[]RealDenseMatMult.standardVector(double[] src1, Shape shape1, double[] src2, Shape shape2) Computes the multiplication of a real dense matrix with a real dense vector using the standard algorithm.static voidComputes element-wise subtraction between tensors and stores the result in the first tensor.static voidRealDenseOps.swapColsUnsafe(Shape shape, double[] data, int colIdx1, int colIdx2, int start, int stop) Swaps two columns, over a specified range of rows, within a matrix.static voidRealDenseOps.swapRowsUnsafe(Shape shape, double[] data, int rowIdx1, int rowIdx2, int start, int stop) Swaps two rows, over a specified range of columns, within a matrix.static booleanRealDenseEquals.tensorEquals(double[] src1, Shape shape1, double[] src2, Shape shape2) Checks if two dense tensors are equal.static voidRealDenseOps.tensorTr(Shape shape, double[] src, int axis1, int axis2, Shape destShape, double[] dest) Computes the generalized trace of this tensor along the specified axes.Constructors in org.flag4j.linalg.ops.dense.real with parameters of type ShapeModifierConstructorDescriptionRealDenseTensorDot(Shape shape1, double[] src1, Shape shape2, double[] src2, int[] src1Axes, int[] src2Axes) Constructs a tensor dot product problem for computing the tensor contraction of two tensors over the specified set of axes. -
Uses of Shape in org.flag4j.linalg.ops.dense.real_field_ops
Methods in org.flag4j.linalg.ops.dense.real_field_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Field<T>>
voidComputes the element-wise addition of two tensors.static <T extends Field<T>>
voidComputes the matrix multiplication of a real dense matrix with a dense field matrix using a blocked algorithm.static <T extends Field<T>>
voidComputes the matrix multiplication of a real dense matrix with a dense field matrix using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.blockedReordered(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a blocked algorithm with the j-k loops swapped.static <T extends Field<T>>
voidRealFieldDenseMatMult.blockedReordered(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a blocked algorithm with the j-k loops swapped.static <T extends Field<T>>
voidRealFieldDenseMatMult.blockedVector(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.blockedVector(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentBlocked(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentBlocked(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentBlockedReordered(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of a blocked algorithm with the j-k loops swapped.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentBlockedReordered(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of a blocked algorithm with the j-k loops swapped.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentBlockedVector(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using a concurrent implementation of a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentBlockedVector(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using a concurrent implementation of a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentReordered(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of the standard matrix multiplication algorithm with j-k loops swapped.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentReordered(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of the standard matrix multiplication algorithm with j-k loops swapped.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentStandard(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of the standard matrix multiplication algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentStandard(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of a real dense matrix with a dense field matrix using a concurrent implementation of the standard matrix multiplication algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentStandardVector(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using a concurrent implementation of the standard matrix multiplication algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.concurrentStandardVector(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using a concurrent implementation of the standard matrix multiplication algorithm.static <T extends Field<T>>
voidDynamically chooses and applies the appropriate algorithm for element-wise tensor multiplication.static <T extends Field<T>>
voidDynamically chooses and applies the appropriate algorithm for element-wise tensor multiplication.static <T extends Field<T>>
voidDynamically chooses and applies element-wise multiplication algorithm to use based on the number of data in the tensors.static <T extends Field<T>>
voidComputes the element-wise division of two tensors.static <T extends Field<T>>
voidComputes the element-wise division of two tensors.static <T extends Field<T>>
voidComputes the element-wise division between two dense tensors.static <T extends Field<T>>
voidComputes the element-wise division between two dense tensors.static <T extends Field<T>>
voidRealFieldDenseElemDiv.elemDivConcurrent(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the element-wise division of two tensors using a concurrent algorithm.static <T extends Field<T>>
voidRealFieldDenseElemDiv.elemDivConcurrent(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the element-wise division of two tensors using a concurrent algorithm.static <T extends Field<T>>
voidComputes the element-wise multiplication of two tensors.static <T extends Field<T>>
voidComputes the element-wise multiplication between two dense tensors.static <T extends Field<T>>
voidRealFieldDenseElemMult.elemMultConcurrent(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the element-wise multiplication of two tensors using a concurrent algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTranspose(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTranspose(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTransposeBlocked(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTransposeBlocked(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTransposeBlockedConcurrent(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a concurrent implementation of a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTransposeBlockedConcurrent(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a concurrent implementation of a blocked algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTransposeConcurrent(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a concurrent algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMultTranspose.multTransposeConcurrent(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a concurrent algorithm.static <T extends Field<T>>
voidComputes the matrix multiplication between a real dense matrix with a dense field matrix using the standard algorithm with j-k loops swapped.static <T extends Field<T>>
voidComputes the matrix multiplication between a real dense matrix with a dense field matrix using the standard algorithm with j-k loops swapped.static <T extends Field<T>>
voidComputes the matrix multiplication between a real dense matrix with a dense field matrix using the standard algorithm.static <T extends Field<T>>
voidComputes the matrix multiplication between a real dense matrix with a dense field matrix using the standard algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.standardVector(double[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using the standard algorithm.static <T extends Field<T>>
voidRealFieldDenseMatMult.standardVector(T[] src1, Shape shape1, double[] src2, Shape shape2, T[] dest) Computes the multiplication of a real dense matrix with a dense field vector using the standard algorithm.static <T extends Field<T>>
voidComputes the element-wise subtraction of two tensors.static <T extends Field<T>>
voidComputes the element-wise subtraction of two tensors.static <T extends Field<T>>
booleanRealFieldDenseEquals.tensorEquals(double[] src1, Shape shape1, T[] src2, Shape shape2) Checks if two dense tensors are equal. -
Uses of Shape in org.flag4j.linalg.ops.dense.ring_ops
Methods in org.flag4j.linalg.ops.dense.ring_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Ring<T>>
booleanDenseRingTensorOps.isCloseToIdentity(Shape shape, T[] src) Checks if a matrix is the identity matrix approximately.static <T extends Ring<T>>
booleanDenseRingTensorOps.isHermitian(Shape shape, T[] src) Checks if a complex dense matrix is Hermitian.static <T extends Ring<T>>
voidDenseRingHermitianTranspose.standardConcurrentHerm(T[] src, Shape shape, int[] axes, T[] dest) Computes the conjugate transpose of a tensor using a concurrent implementation.static <T extends Ring<T>>
voidDenseRingHermitianTranspose.standardConcurrentHerm(T[] src, Shape shape, int axis1, int axis2, T[] dest) Computes complex conjugate transpose of a tensor along specified axes using a standard concurrent transpose algorithm.static <T extends Ring<T>>
voidDenseRingHermitianTranspose.standardHerm(T[] src, Shape shape, int[] axes, T[] dest) Computes the conjugate transpose of a tensor using a standard implementation.static <T extends Ring<T>>
voidDenseRingHermitianTranspose.standardHerm(T[] src, Shape shape, int axis1, int axis2, T[] dest) Computes complex conjugate transpose of a tensor along specified axes using a standard transpose algorithm.static <T extends Ring<T>>
voidComputes the element-wise difference between two dense tensors. -
Uses of Shape in org.flag4j.linalg.ops.dense.semiring_ops
Methods in org.flag4j.linalg.ops.dense.semiring_ops that return ShapeModifier and TypeMethodDescriptionstatic ShapeDenseSemiringOps.getTrShape(Shape shape, int axis1, int axis2) Computes the shape of the tensor resulting from the generalized tensor trace along the specified axes for a tensor with the specified shape.Methods in org.flag4j.linalg.ops.dense.semiring_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Semiring<T>>
T[]Computes the element-wise addition of two tensors.static <T extends Semiring<T>>
voidComputes the matrix multiplication of two dense matrices using a blocked algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMult.blockedReordered(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of two dense matrices using a blocked algorithm with the j-k loops swapped.static <T extends Semiring<T>>
voidDenseSemiringMatMult.blockedVector(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a dense matrix with a dense vector using a blocked algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMult.concurrentBlocked(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of two dense matrices using a concurrent implementation of a blocked algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMult.concurrentBlockedReordered(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of two dense matrices using a concurrent implementation of a blocked algorithm with the j-k loops swapped.static <T extends Semiring<T>>
voidDenseSemiringMatMult.concurrentBlockedVector(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a dense matrix with a dense vector using a concurrent implementation of a blocked algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMult.concurrentReordered(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of two dense matrices using a concurrent implementation of the standard matrix multiplication algorithm with j-k loops swapped.static <T extends Semiring<T>>
voidDenseSemiringMatMult.concurrentStandard(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the matrix multiplication of two dense matrices using a concurrent implementation of the standard matrix multiplication algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMult.concurrentStandardVector(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a dense matrix with a dense vector using a concurrent implementation of the standard matrix multiplication algorithm.static <T extends Semiring<T>>
voidDynamically chooses and applies an element-wise multiplication algorithm to use based on the number of data in the tensors.static <T extends Semiring<T>>
voidDispatches a matrix multiply problem to the appropriate algorithm based on the size of the matrices.static <T extends Semiring<T>>
voidDenseSemiringMatMultDispatcher.dispatchTranspose(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Dispatches a matrix multiply-transpose problem equivalent tosrc1.mult(src2.T())to the appropriate algorithm based on the size of the matrices.static <T extends Semiring<T>>
voidDenseSemiringMatMultDispatcher.dispatchVector(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Dispatches a matrix-vector multiplication problem to the appropriate algorithm based on the size of the matrix and vector.static <T extends Semiring<T>>
voidComputes the element-wise multiplication of two tensors.static <T extends Semiring<T>>
T[]Computes the element-wise product of two tensors.static <T extends Semiring<T>>
voidDenseSemiringElemMult.elemMultConcurrent(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the element-wise multiplication of two tensors using a concurrent algorithm.static ShapeDenseSemiringOps.getTrShape(Shape shape, int axis1, int axis2) Computes the shape of the tensor resulting from the generalized tensor trace along the specified axes for a tensor with the specified shape.static <T extends Semiring<T>>
voidDenseSemiringMatMultTranspose.multTranspose(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix.static <T extends Semiring<T>>
voidDenseSemiringMatMultTranspose.multTransposeBlocked(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a blocked algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMultTranspose.multTransposeBlockedConcurrent(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a concurrent implementation of a blocked algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMultTranspose.multTransposeConcurrent(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Multiplies a matrix to the transpose of a second matrix using a concurrent algorithm.static <T extends Semiring<T>>
voidComputes the matrix multiplication between two dense matrices using the standard algorithm with j-k loops swapped.DenseSemiringMatMultDispatcher.selectAlgorithmVector(Shape shape) Dynamically chooses matrix-vector multiply algorithm based on the shapes of the matrix to multiply.static <T extends Semiring<T>>
voidComputes the matrix multiplication between two dense matrices using the standard algorithm.static <T extends Semiring<T>>
voidDenseSemiringMatMult.standardVector(T[] src1, Shape shape1, T[] src2, Shape shape2, T[] dest) Computes the multiplication of a dense matrix with a dense vector using the standard algorithm.static <T extends Semiring<T>>
voidComputes the generalized trace of this tensor along the specified axes.static <T extends Semiring<T>>
SparseMatrixData<T> Converts a dense matrix to an equivalent sparse COO matrix.static <T extends Semiring<T>>
SparseMatrixData<T> Converts a dense matrix to an equivalent sparse COO matrix.static <T extends Semiring<T>>
SparseTensorData<T> DenseSemiringConversions.toCooTensor(Shape shape, T[] entries) Converts a dense tensor to an equivalent sparse COO tensor.static <T extends Semiring<T>>
SparseTensorData<T> DenseSemiringConversions.toCooTensor(Shape shape, T[] entries, double estimatedSparsity) Converts a dense tensor to an equivalent sparse COO tensor. -
Uses of Shape in org.flag4j.linalg.ops.dispatch
Methods in org.flag4j.linalg.ops.dispatch with parameters of type ShapeModifier and TypeMethodDescriptionprotected abstract BiFunction<T, U, R> Computes the appropriate function to use when computing the tensor operation between two tensors.protected BiFunction<CMatrix, CMatrix, CMatrix> Computes the appropriate function to use when computing the matrix multiplication between two matrices.protected BiFunction<CMatrix, CVector, CVector> Computes the appropriate function to use when computing the matrix multiplication between two matrices.protected BiFunction<Matrix, Matrix, Matrix> Computes the appropriate function to use when computing the matrix multiplication between two matrices.protected BiFunction<Matrix, Vector, Vector> Computes the appropriate function to use when computing the matrix multiplication between two matrices.protected abstract voidBiTensorOpDispatcher.validateShapes(Shape aShape, Shape bShape) Validates the shapes are valid for the operation.protected voidCm128DeMatMultDispatcher.validateShapes(Shape aShape, Shape bShape) Validates the shapes are valid for the operation.protected voidCm128DeMatVecMultDispatcher.validateShapes(Shape aShape, Shape bShape) Validates the shapes are valid for the operation.protected voidReDeMatMultDispatcher.validateShapes(Shape aShape, Shape bShape) Validates the shapes are valid for the operation.protected voidReDeMatVecMultDispatcher.validateShapes(Shape aShape, Shape bShape) Validates the shapes are valid for the operation. -
Uses of Shape in org.flag4j.linalg.ops.sparse
Methods in org.flag4j.linalg.ops.sparse with parameters of type ShapeModifier and TypeMethodDescriptionstatic SparseVectorData<Double> SparseUtils.coalesce(BinaryOperator<Double> aggregator, Shape shape, double[] data, int[] indices) Coalesces this sparse COO vector.static SparseTensorData<Double> SparseUtils.coalesce(BinaryOperator<Double> aggregator, Shape shape, double[] data, int[][] indices) Coalesces this sparse COO tensor.static SparseMatrixData<Double> SparseUtils.coalesce(BinaryOperator<Double> aggregator, Shape shape, double[] data, int[] rowIndices, int[] colIndices) Coalesces this sparse COO matrix.static <T> SparseVectorData<T> SparseUtils.coalesce(BinaryOperator<T> aggregator, Shape shape, T[] data, int[] indices) Coalesces this sparse COO vector.static <T> SparseTensorData<T> SparseUtils.coalesce(BinaryOperator<T> aggregator, Shape shape, T[] data, int[][] indices) Coalesces this sparse COO tensor.static <T> SparseMatrixData<T> SparseUtils.coalesce(BinaryOperator<T> aggregator, Shape shape, T[] data, int[] rowIndices, int[] colIndices) Coalesces this sparse COO matrix.static int[][]SparseUtils.cooFlattenIndices(Shape shape, int[][] indices) Flattens the non-zero indices of a sparse COO tensor.static int[][]SparseUtils.cooFlattenIndices(Shape shape, int[][] indices, int axis) Flattens the non-zero indices of a sparse COO tensor along a specified axis.static int[][]SparseUtils.cooReshape(Shape oldShape, Shape newShape, int[][] indices) Computes new indices for the reshaping of a sparse COO tensor.static SparseVectorData<Double> Drops any explicit zeros in this sparse COO vector.static SparseTensorData<Double> Drops any explicit zeros in this sparse COO tensor.static SparseMatrixData<Double> Drops any explicit zeros in this sparse COO matrix.static <T extends Semiring<T>>
SparseVectorData<T> Drops any explicit zeros in this sparse COO vector.static <T extends Semiring<T>>
SparseTensorData<T> Drops any explicit zeros in this sparse COO tensor.static <T extends Semiring<T>>
SparseMatrixData<T> Drops any explicit zeros in this sparse COO matrix.static <T extends Semiring<T>>
SparseMatrixData<T> SparseUtils.dropZerosCsr(Shape shape, T[] data, int[] rowPointers, int[] colIndices) Drops all explicit zeros within a sparse CSR matrix.static voidSparseUtils.validateCsrMatrix(Shape shape, int nnz, int[] rowPointers, int[] colIndices) Validates that the provided arguments specify a valid CSR matrix.static voidSparseUtils.validateSlice(Shape shape, int rowStart, int rowEnd, int colStart, int colEnd) Validates that the specified slice is a valid slice of a matrix with the specifiedshape. -
Uses of Shape in org.flag4j.linalg.ops.sparse.coo
Methods in org.flag4j.linalg.ops.sparse.coo that return ShapeModifier and TypeMethodDescriptionstatic <T> ShapeCooConcat.repeat(T[] src, int[] srcIndices, int size, int n, int axis, T[] destEntries, int[] destRows, int[] destCols) Repeats a sparse COO vectorntimes along a certain axis to create a matrix.Methods in org.flag4j.linalg.ops.sparse.coo with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T> SparseVectorData<T> CooGetSet.getCol(Shape shape, T[] entries, int[] rowIndices, int[] colIndices, int colIdx, int start, int end) Gets a specified column of a COO matrix betweenstart(inclusive) andend(exclusive).static <T> SparseVectorData<T> Gets the elements of a COO matrix along the specified diagonal.static <T> SparseVectorData<T> CooGetSet.getRow(Shape shape, T[] entries, int[] rowIndices, int[] colIndices, int rowIdx, int start, int end) Gets a specified row of a COO matrix betweenstart(inclusive) andend(exclusive).static <T> SparseMatrixData<T> CooGetSet.getSlice(Shape shape, T[] entries, int[] rowIndices, int[] colIndices, int rowStart, int rowEnd, int colStart, int colEnd) Extracts a specified slice from a sparse COO matrix.static <T> SparseMatrixData<T> Gets the lower-triangular portion of a sparse COO matrix with a possible diagonal offset.static <T> SparseMatrixData<T> Gets the upper-triangular portion of a sparse COO matrix with a possible diagonal offset.static <T> booleanCooProperties.isSymmetric(Shape shape, T[] data, int[] rowIndices, int[] colIndices, T zeroValue) Checks if a sparse COO matrix is symmetric.static <T> SparseMatrixData<T> CooGetSet.setCol(Shape srcShape, T[] srcEntries, int[] rowIndices, int[] colIndices, int colIdx, int size, T[] col, int[] indices) Sets a column of a sparse matrix to the values in a sparse tensor.static <T> SparseMatrixData<T> CooGetSet.setRow(Shape srcShape, T[] srcEntries, int[] rowIndices, int[] colIndices, int rowIdx, int size, T[] row, int[] indices) Sets a specified row of a real sparse COO matrix to the values in a sparse COO vector.static <T> SparseMatrixData<T> CooGetSet.setSlice(Shape shape1, T[] src1Entries, int[] src1RowIndices, int[] src1ColIndices, Shape shape2, T[] src2Entries, int[] src2RowIndices, int[] src2ColIndices, int row, int col) Copies a sparse matrix and sets a slice of the sparse COO matrix to the data of another sparse COO matrix.static voidCooManipulations.swapCols(Shape shape, Object[] entries, int[] rowIndices, int[] colIndices, int colIdx1, int colIdx2) Swaps two columns, in place, in a sparse COO matrix.static voidCooManipulations.swapRows(Shape shape, Object[] entries, int[] rowIndices, int[] colIndices, int rowIdx1, int rowIdx2) Swaps two rows, in place, in a sparse COO matrix.static voidCooTranspose.tensorTranspose(Shape shape, Object[] srcEntries, int[][] srcIndices, int[] axes, Object[] destEntries, int[][] destIndices) Computes the transpose of a sparse COO tensor.static voidCooTranspose.tensorTranspose(Shape shape, Object[] srcEntries, int[][] srcIndices, int axis1, int axis2, Object[] destEntries, int[][] destIndices) Computes the transpose of a sparse COO tensor by exchangingaxis1andaxis2.static <T> voidCooConversions.toCsr(Shape shape, T[] entries, int[] rowIndices, int[] colIndices, T[] destEntries, int[] destRowPointers, int[] destColIndices) Converts a COO matrix to an equivalent CSR matrix.static <T> voidConverts a sparse COO tensor to an equivalent dense tensor.Constructors in org.flag4j.linalg.ops.sparse.coo with parameters of type ShapeModifierConstructorDescriptionCooTensorDot(Shape shape1, T[] src1, int[][] indices1, Shape shape2, T[] src2, int[][] indices2, int[] src1Axes, int[] src2Axes) Constructs a tensor dot product problem for computing the tensor contraction of two tensors over the specified set of axes. -
Uses of Shape in org.flag4j.linalg.ops.sparse.coo.real
Methods in org.flag4j.linalg.ops.sparse.coo.real with parameters of type ShapeModifier and TypeMethodDescriptionstatic double[]RealSparseMatMult.concurrentStandard(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a concurrent implementation of the standard algorithm.static double[]RealSparseMatMult.concurrentStandardVector(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices) Computes the multiplication between a sparse matrix and a sparse vector using a concurrent implementation of the standard algorithm.static booleanRealSparseMatrixProperties.isAntiSymmetric(Shape shape, double[] data, int[] rowIndices, int[] colIndices) Checks if a sparse COO matrix is symmetric.static booleanRealSparseMatrixProperties.isSymmetric(Shape shape, double[] data, int[] rowIndices, int[] colIndices) Checks if a sparse COO matrix is symmetric.static double[]RealSparseMatMult.standard(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a standard algorithm.static double[]RealSparseMatMult.standardVector(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices) Computes the multiplication between a sparse matrix and a sparse vector using a standard algorithm. -
Uses of Shape in org.flag4j.linalg.ops.sparse.coo.real_complex
Methods in org.flag4j.linalg.ops.sparse.coo.real_complex with parameters of type ShapeModifier and TypeMethodDescriptionstatic Complex128[]RealComplexSparseMatrixMultiplication.concurrentStandard(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, Complex128[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a concurrent implementation of the standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.concurrentStandard(Complex128[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a concurrent implementation of the standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.concurrentStandardVector(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, Complex128[] src2, int[] indices, Shape shape2) Computes the multiplication between a sparse matrix and a sparse vector using a concurrent implementation of the standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.concurrentStandardVector(Complex128[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices, Shape shape2) Computes the multiplication between a sparse matrix and a sparse vector using a concurrent implementation of the standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.standard(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, Complex128[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.standard(Complex128[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2) Computes the matrix multiplication between two sparse matrices using a standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.standardVector(double[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, Complex128[] src2, int[] indices, Shape shape2) Computes the multiplication between a sparse matrix and a sparse vector using a standard algorithm.static Complex128[]RealComplexSparseMatrixMultiplication.standardVector(Complex128[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, double[] src2, int[] indices, Shape shape2) Computes the multiplication between a sparse matrix and a sparse vector using a standard algorithm. -
Uses of Shape in org.flag4j.linalg.ops.sparse.coo.ring_ops
Methods in org.flag4j.linalg.ops.sparse.coo.ring_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Ring<T>>
booleanCooRingMatrixOps.isHermitian(Shape shape, T[] data, int[] rowIndices, int[] colIndices) Checks if a sparse COORingmatrix is Hermitian.static <V extends Ring<V>>
SparseMatrixData<V> CooRingMatrixOps.sub(Shape shape1, V[] src1Entries, int[] src1RowIndices, int[] src1ColIndices, Shape shape2, V[] src2Entries, int[] src2RowIndices, int[] src2ColIndices) Computes the element-wise difference of two sparse matrices.static <V extends Ring<V>>
SparseTensorData<V> CooRingTensorOps.sub(Shape shape1, V[] src1Entries, int[][] src1Indices, Shape shape2, V[] src2Entries, int[][] src2Indices) Sums two complex sparse COO tensors and stores result in a new COO tensor.static <T extends Ring<T>>
SparseVectorData<T> CooRingVectorOps.sub(Shape shape1, T[] src1, int[] src1Indices, Shape shape2, T[] src2, int[] src2Indices) Computes the element-wise vector subtraction between two real sparse vectors.static <T extends Ring<T>>
voidCooRingHermTranspose.tensorHermTranspose(Shape shape, T[] srcEntries, int[][] srcIndices, int[] axes, T[] destEntries, int[][] destIndices) Computes the Hermitian transpose of a sparse COO tensor.static <T extends Ring<T>>
voidCooRingHermTranspose.tensorHermTranspose(Shape shape, T[] srcEntries, int[][] srcIndices, int axis1, int axis2, T[] destEntries, int[][] destIndices) Computes the Hermitian transpose of a sparse COO tensor by exchangingaxis1andaxis2. -
Uses of Shape in org.flag4j.linalg.ops.sparse.coo.semiring_ops
Methods in org.flag4j.linalg.ops.sparse.coo.semiring_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <V extends Semiring<V>>
SparseMatrixData<V> CooSemiringMatrixOps.add(Shape shape1, V[] src1Entries, int[] src1RowIndices, int[] src1ColIndices, Shape shape2, V[] src2Entries, int[] src2RowIndices, int[] src2ColIndices) Adds two sparse matrices.static <V extends Semiring<V>>
SparseTensorData<V> CooSemiringTensorOps.add(Shape shape1, V[] src1Entries, int[][] src1Indices, Shape shape2, V[] src2Entries, int[][] src2Indices) Sums two complex sparse COO tensors and stores result in a new COO tensor.static <T extends Semiring<T>>
SparseVectorData<T> CooSemiringVectorOps.add(Shape shape1, T[] src1, int[] src1Indices, Shape shape2, T[] src2, int[] src2Indices) Computes the element-wise vector addition between two real sparse vectors.static <T extends Semiring<T>>
voidCooSemiringMatMult.concurrentStandard(T[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, T[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2, T[] dest) Computes the matrix multiplication between two sparse matrices using a concurrent implementation of the standard algorithm.static <T extends Semiring<T>>
voidCooSemiringMatMult.concurrentStandardVector(T[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the multiplication between a sparse matrix and a sparse vector using a concurrent implementation of the standard algorithm.static <T extends Semiring<T>>
TCooSemiringVectorOps.dot(Shape shape1, T[] src1, int[] src1Indices, Shape shape2, T[] src2, int[] src2Indices) Computes the dot product between two sparse COO vectors.static <V extends Semiring<V>>
SparseMatrixData<V> CooSemiringMatrixOps.elemMult(Shape shape1, V[] src1Entries, int[] src1RowIndices, int[] src1ColIndices, Shape shape2, V[] src2Entries, int[] src2RowIndices, int[] src2ColIndices) Multiplies two sparse matrices element-wise.static <V extends Semiring<V>>
SparseTensorData<V> CooSemiringTensorOps.elemMult(Shape shape1, V[] src1Entries, int[][] src1Indices, Shape shape2, V[] src2Entries, int[][] src2Indices) Computes the element-wise multiplication between two complex sparse COO tensors.static <T extends Semiring<T>>
SparseVectorData<T> CooSemiringVectorOps.elemMult(Shape shape1, T[] src1, int[] src1Indices, Shape shape2, T[] src2, int[] src2Indices) Computes the element-wise vector multiplication between two real sparse vectors.static <T extends Semiring<T>>
booleanCooSemiringMatrixProperties.isIdentity(Shape shape, T[] entries, int[] rowIndices, int[] colIndices) Checks if a complex sparse COO matrix is the identity matrix.static <T extends Semiring<T>>
voidCooSemiringMatMult.standard(T[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, T[] src2, int[] rowIndices2, int[] colIndices2, Shape shape2, T[] dest) Computes the matrix multiplication between two sparse matrices using a standard algorithm.static <T extends Semiring<T>>
voidCooSemiringMatMult.standardVector(T[] src1, int[] rowIndices1, int[] colIndices1, Shape shape1, T[] src2, int[] indices, T[] dest) Computes the multiplication between a sparse matrix and a sparse vector using a standard algorithm.static <T extends Semiring<T>>
SparseTensorData<T> Computes the generalized trace of a tensor along the specified axes. -
Uses of Shape in org.flag4j.linalg.ops.sparse.csr
Methods in org.flag4j.linalg.ops.sparse.csr that return ShapeModifier and TypeMethodDescriptionstatic <T> ShapeCsrConversions.flatten(Shape shape, T[] entries, int[] rowPointers, int[] colIndices, int axis, int[] destRowPointers, int[] destColIndices) Computes the new row pointers and column indices for a sparse CSR matrix flattened along someaxis.Methods in org.flag4j.linalg.ops.sparse.csr with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T> SparseMatrixData<T> CsrOps.applyBinOpp(Shape shape1, T[] src1Entries, int[] src1RowPointers, int[] src1ColIndices, Shape shape2, T[] src2Entries, int[] src2RowPointers, int[] src2ColIndices, BinaryOperator<T> opp, UnaryOperator<T> uOpp) Applies an element-wise binary operation to two csr matrices.static <T> ShapeCsrConversions.flatten(Shape shape, T[] entries, int[] rowPointers, int[] colIndices, int axis, int[] destRowPointers, int[] destColIndices) Computes the new row pointers and column indices for a sparse CSR matrix flattened along someaxis.static <T> SparseMatrixData<T> CsrOps.getSlice(Shape shape, T[] entries, int[] rowPointers, int[] colIndices, int rowStart, int rowEnd, int colStart, int colEnd) Gets a specified slice of a CSR matrix.static <T> booleanCsrProperties.isSymmetric(Shape shape, T[] values, int[] rowPointers, int[] colIndices, T zeroValue) Checks if a sparse CSR matrix is symmetric.static <T> voidCsrConversions.toCoo(Shape shape, T[] entries, int[] rowPointers, int[] colIndices, T[] destEntries, int[] destRowIndices, int[] destColIndices) Converts a sparse CSR matrix to an equivalent sparse COO matrix.static <T> voidCsrConversions.toDense(Shape shape, T[] entries, int[] rowPointers, int[] colIndices, T[] dest, T zero) Converts a sparse CSR matrix to a dense matrix. -
Uses of Shape in org.flag4j.linalg.ops.sparse.csr.ring_ops
Methods in org.flag4j.linalg.ops.sparse.csr.ring_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Ring<T>>
booleanCsrRingProperties.isHermitian(Shape shape, T[] values, int[] rowPointers, int[] colIndices) Checks if a sparse CSR matrix is Hermitian. -
Uses of Shape in org.flag4j.linalg.ops.sparse.csr.semiring_ops
Methods in org.flag4j.linalg.ops.sparse.csr.semiring_ops with parameters of type ShapeModifier and TypeMethodDescriptionstatic <T extends Semiring<T>>
booleanSemiringCsrProperties.isIdentity(Shape shape, T[] entries, int[] rowPointers, int[] colIndices) Checks if thesrcmatrix is the identity matrix.static <T extends Semiring<T>>
booleanChecks if a sparse CSR matrix is lower-triangular.static <T extends Semiring<T>>
booleanChecks if a sparse CSR matrix is upper-triangular.static <T extends Semiring<T>>
voidSemiringCsrMatMult.standard(Shape shape1, T[] src1Entries, int[] src1RowPointers, int[] src1ColIndices, Shape shape2, T[] src2Entries, int[] src2RowPointers, int[] src2ColIndices, T[] destEntries, Semiring<T> zero) Computes the matrix multiplication between two sparse CSR matrices.static <T extends Semiring<T>>
SparseMatrixData<T> SemiringCsrMatMult.standardToSparse(Shape shape1, T[] src1Entries, int[] src1RowPointers, int[] src1ColIndices, Shape shape2, T[] src2Entries, int[] src2RowPointers, int[] src2ColIndices) Computes the matrix multiplication between two sparse CSR matrices and returns the result as a sparse matrix.static <T extends Semiring<T>>
voidSemiringCsrMatMult.standardVector(Shape shape, T[] src1, int[] rowPointers, int[] colIndices, int size, T[] src2, int[] indices, T[] dest, T zero) Computes the matrix-vector multiplication between a sparse CSR matrix and a sparse COO vector. -
Uses of Shape in org.flag4j.linalg.solvers.exact
Methods in org.flag4j.linalg.solvers.exact that return ShapeModifier and TypeMethodDescriptionprotected ShapeExactTensorSolver.getOutputShape(T A, T B, int aRankOriginal) Constructs the shape of the output.Methods in org.flag4j.linalg.solvers.exact with parameters of type Shape -
Uses of Shape in org.flag4j.linalg.solvers.exact.triangular
Methods in org.flag4j.linalg.solvers.exact.triangular with parameters of type ShapeModifier and TypeMethodDescriptionprotected voidBackSolver.checkParams(T coeff, Shape constantShape) Ensures passed parameters are valid for the back solver. -
Uses of Shape in org.flag4j.rng
Methods in org.flag4j.rng with parameters of type ShapeModifier and TypeMethodDescriptionRandomDenseTensor.randnCMatrix(Shape shape) Generates a matrix filled with pseudorandom values sampled from a bivariate standard Gaussian (normal) distribution with mean zero and standard deviation one along both the real and imaginary axes.RandomDenseTensor.randnCMatrix(Shape shape, double mean, double std) Generates a matrix filled with pseudorandom values sampled from a bivariate Gaussian (normal) distribution with specified mean and standard deviation along both the real and imaginary axes.RandomDenseTensor.randnCMatrix(Shape shape, double meanRe, double stdRe, double meanIm, double stdIm, double corrCoeff) Generates a matrix filled with pseudorandom values sampled from a bivariate Gaussian (normal) distribution.RandomDenseTensor.randnCTensor(Shape shape) Generates a tensor filled with pseudorandom values sampled from a bivariate standard Gaussian (normal) distribution with mean zero and standard deviation one along both the real and imaginary axes.RandomDenseTensor.randnCTensor(Shape shape, double mean, double std) Generates a tensor filled with pseudorandom values sampled from a bivariate Gaussian (normal) distribution with specified mean and standard deviation along both the real and imaginary axes.RandomDenseTensor.randnCTensor(Shape shape, double meanRe, double stdRe, double meanIm, double stdIm, double corrCoeff) Generates a tensor filled with pseudorandom values sampled from a bivariate Gaussian (normal) distribution.RandomDenseTensor.randnMatrix(Shape shape) Generates a matrix filled with pseudorandom values sampled from a normal distribution with mean of 0.0 and standard deviation of 1.0.RandomDenseTensor.randnMatrix(Shape shape, double mean, double std) Generates a matrix filled with pseudorandom values sampled from a normal distribution with specified mean and standard deviation.RandomDenseTensor.randnTensor(Shape shape) Generates a tensor filled with pseudorandom values sampled from a normal distribution with mean of 0.0 and standard deviation of 1.0.RandomDenseTensor.randnTensor(Shape shape, double mean, double std) Generates a tensor filled with pseudorandom values sampled from a normal distribution with specified mean and standard deviation.RandomDenseTensor.randomCMatrix(Shape shape) Generates a matrix filled with pseudorandom complex values uniformly distributed in the unit disk centered at the origin of the complex plane.RandomDenseTensor.randomCMatrix(Shape shape, double min, double max) Generates a matrix filled with pseudorandom complex values uniformly distributed in an annulus (i.e. washer) centered at the origin of the complex plane.RandomSparseTensor.randomCooCMatrix(Shape shape, double min, double max, double sparsity) Generates a random sparse matrix with the specified sparsity.RandomSparseTensor.randomCooCMatrix(Shape shape, double min, double max, int nnz) Generates a random sparse matrix with the specified number of non-zero data.RandomSparseTensor.randomCooCTensor(Shape shape, double min, double max, double sparsity) Constructs a complex COO tensor with the specified shape and sparsity filled with pseudo-random values uniformly distributed in an annulus centered on the origin of the complex plane.RandomSparseTensor.randomCooCTensor(Shape shape, double min, double max, int nnz) Constructs a complex COO tensor with the specified shape and number of non-zero entries filled with pseudo-random values uniformly distributed in an annulus centered on the origin of the complex plane.RandomSparseTensor.randomCooMatrix(Shape shape, double min, double max, double sparsity) Generates a random sparse matrix with the specified sparsity.RandomSparseTensor.randomCooMatrix(Shape shape, double min, double max, int nnz) Generates a random sparse matrix with the specified number of non-zero data.RandomSparseTensor.randomCooTensor(Shape shape, double min, double max, double sparsity) Constructs a COO tensor with the specified shape and sparsity filled with pseudo-random values from a uniform distribution in [min, max).RandomSparseTensor.randomCooTensor(Shape shape, double min, double max, int nnz) Constructs a COO tensor with the specified shape and number of non-zero entries filled with pseudo-random values from a uniform distribution in [min, max).RandomSparseTensor.randomCsrMatrix(Shape shape, double min, double max, double sparsity) Generates a random sparse matrix with the specified sparsity.RandomSparseTensor.randomCsrMatrix(Shape shape, double min, double max, int nnz) Generates a random sparse matrix with the specified number of non-zero data.RandomDenseTensor.randomCTensor(Shape shape) Generates a tensor filled with pseudorandom complex values uniformly distributed in the unit disk centered at the origin of the complex plane.RandomDenseTensor.randomCTensor(Shape shape, double min, double max) Generates a tensor filled with pseudorandom complex values uniformly distributed in an annulus (i.e. washer) centered at the origin of the complex plane.RandomDenseTensor.randomMatrix(Shape shape) Generates a matrix filled with pseudorandom values uniformly distributed in[0, 1).RandomDenseTensor.randomMatrix(Shape shape, double min, double max) Generates a matrix filled with pseudorandom values uniformly distributed in[min, max).RandomDenseTensor.randomTensor(Shape shape) Generates a tensor filled with pseudorandom values uniformly distributed in[0, 1).RandomDenseTensor.randomTensor(Shape shape, double min, double max) Generates a tensor filled with pseudorandom values uniformly distributed in[min, max). -
Uses of Shape in org.flag4j.util
Methods in org.flag4j.util that return ShapeModifier and TypeMethodDescriptionstatic ShapeArrayUtils.nDArrayShape(Object nDArray) Infers the shape of a rectangular nD Java array.Methods in org.flag4j.util with parameters of type ShapeModifier and TypeMethodDescriptionstatic voidValidateParameters.ensureEqualShape(Shape shape1, Shape shape2) Checks if twoShapeobjects are equivalent.static voidValidateParameters.ensureMatMultShapes(Shape shape1, Shape shape2) Checks if twoShapeobjects satisfy the requirements of matrix-matrix or matrix-vector multiplication.static voidValidateParameters.ensureRank(Shape shape, int expRank) Checks that a shape has the specified rank.static voidValidateParameters.ensureSquare(Shape shape) Checks if a shape represents a square tensor.static voidValidateParameters.ensureSquareMatrix(Shape shape) Checks if a shape represents a square matrix.static voidValidateParameters.ensureTotalEntriesEqual(Shape shape1, Shape shape2) Checks that two shapes have the same total number of data.static voidValidateParameters.ensureValidAxes(Shape shape, int... axes) Checks if all providedaxesare valid with respect to the rank of the givenshape.static StringErrorMessages.equalShapeErrMsg(Shape shape1, Shape shape2) Gets an error message for two tensors with mismatching shapes.static StringErrorMessages.getShapeTotalEntriesErr(Shape shape1, Shape shape2) Gets an error message for two shapes which cannot be broadcast together.static StringErrorMessages.getSquareShapeErr(Shape shape) Gets an error message for a shape which was expected to be square but was notstatic StringErrorMessages.matMultShapeErrMsg(Shape shape1, Shape shape2) Gets an error message for two matrices with shapes not conducive with matrix multiplication.static intRecursively validates the shape of the nD array and flattens it into the provided 1D array.static <T> intRecursively validates the shape of the nD array and flattens it into the provided 1D array.static StringErrorMessages.shapeEntriesError(Shape shape, int numEntries) Gets an error message for a shape which cannot hold a specified number of data.static voidValidateParameters.validateTensorIndex(Shape shape, int... index) Checks if the provided nD index is contained in a tensor defined by the givenshape.static voidValidateParameters.validateTensorIndices(Shape shape, int[]... indices) Checks that a set of nD indices are valid indices for a tensor with the specified shape.